Architecture

Architecture

In benchmark evaluations, the advantages of the NetBurst architecture were not clear. With carefully optimized application code, the first P4 did outperform Intel's fastest Pentium III, as expected. But in legacy applications with many branching or x87 floating-point instructions, the P4 would merely match or even fall behind its predecessor. Its main handicap was a shared uni-directional bus. Furthermore, the NetBurst architecture dissipated more heat than any previous Intel or AMD processor.

As a result, the Pentium 4's introduction was met with mixed reviews: Developers disliked the Pentium 4, as it posed a new set of code optimization rules. For example, in mathematical applications AMD's much lower-clocked Athlon easily outperformed the Pentium 4, which would only catch up if software were re-compiled with SSE2 support. Tom Yager of Infoworld magazine called it "the fastest CPU - for programs that fit entirely in cache". Computer-savvy buyers avoided Pentium 4 PCs due to their price-premium and questionable benefit. In terms of product marketing, the Pentium 4's singular emphasis on clock frequency (above all else) made it a marketer's dream. The result of this was that the NetBurst architecture was often referred to as a marchitecture by various computing websites and publications during the life of the Pentium 4.

The two classical metrics of CPU performance are IPC (instructions per cycle) and clock-frequency. While IPC is difficult to quantify (due to dependence on the benchmark application's instruction mix), clock-frequency is a simple measurement yielding a single absolute number. Unsophisticated buyers would simply associate the highest clock-rating with the best product, and the Pentium 4 was the undisputed megahertz champion. As AMD was unable to compete by these rules, it countered Intel's marketing advantage with the 'megahertz myth campaign.' AMD product marketing used a "PR-rating" system, which assigned a merit value based on relative-performance to a baseline machine.

See also: Megahertz myth

A Pentium 4, 2.4 GHz

At the launch of the P4, Intel stated NetBurst was expected to scale to 10 GHz (over several fabrication process generations). However, the NetBurst architecture ultimately hit a frequency ceiling far below expectation—the fastest retail Pentium 4 never exceeded 4 GHz. Intel had not anticipated a rapid upward scaling of transistor power leakage that began to occur as the chip reached the 90 nm process node and smaller. This new power leakage phenomenon, along with the standard thermal output, created cooling and clock scaling problems as clock speeds increased. Reacting to these unexpected obstacles, Intel attempted several core redesigns ("Prescott" most notably) and explored new manufacturing technologies. Nothing solved their problems though and in 2005–06 Intel shifted development away from NetBurst to focus on the cooler-running Pentium M architecture. In March 2006, Intel announced the Intel Core microarchitecture, which puts greater emphasis on energy efficiency and performance per clock. The final NetBurst-derived products were released in 2006, with all subsequent product families switching exclusively to the Intel Core microarchitecture.

No comments:

Post a Comment